Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Vereinfache .
Schritt 3.4.1
Schreibe als um.
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Vereinige und vereinfache den Nenner.
Schritt 3.4.3.1
Mutltipliziere mit .
Schritt 3.4.3.2
Potenziere mit .
Schritt 3.4.3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4.3.4
Addiere und .
Schritt 3.4.3.5
Schreibe als um.
Schritt 3.4.3.5.1
Benutze , um als neu zu schreiben.
Schritt 3.4.3.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.3.5.3
Kombiniere und .
Schritt 3.4.3.5.4
Kürze den gemeinsamen Faktor von .
Schritt 3.4.3.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.3.5.4.2
Forme den Ausdruck um.
Schritt 3.4.3.5.5
Berechne den Exponenten.
Schritt 3.4.4
Vereinfache den Zähler.
Schritt 3.4.4.1
Schreibe als um.
Schritt 3.4.4.2
Potenziere mit .
Schritt 3.4.5
Vereinfache durch Herausfaktorisieren.
Schritt 3.4.5.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 3.4.5.2
Stelle die Faktoren in um.
Schritt 3.5
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.6
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.7
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.7.1
Teile jeden Ausdruck in durch .
Schritt 3.7.2
Vereinfache die linke Seite.
Schritt 3.7.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.7.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.7.2.1.2
Dividiere durch .
Schritt 3.7.3
Vereinfache die rechte Seite.
Schritt 3.7.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Schritt 5.2.3.1
Vereinfache den Zähler.
Schritt 5.2.3.1.1
Mutltipliziere mit .
Schritt 5.2.3.1.2
Schreibe als um.
Schritt 5.2.3.1.3
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 5.2.3.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2.2
Dividiere durch .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache jeden Term.
Schritt 5.3.3.1
Wende das Distributivgesetz an.
Schritt 5.3.3.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.2
Forme den Ausdruck um.
Schritt 5.3.3.3
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.3.3
Forme den Ausdruck um.
Schritt 5.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.3.4.1
Addiere und .
Schritt 5.3.4.2
Addiere und .
Schritt 5.3.5
Die Funktionen Sinus und Arkussinus sind Inverse.
Schritt 5.3.6
Wende die Produktregel auf an.
Schritt 5.3.7
Schreibe als um.
Schritt 5.3.7.1
Benutze , um als neu zu schreiben.
Schritt 5.3.7.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.7.3
Kombiniere und .
Schritt 5.3.7.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.7.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.7.4.2
Forme den Ausdruck um.
Schritt 5.3.7.5
Vereinfache.
Schritt 5.3.8
Potenziere mit .
Schritt 5.3.9
Kürze den gemeinsamen Faktor von .
Schritt 5.3.9.1
Faktorisiere aus heraus.
Schritt 5.3.9.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.9.3
Forme den Ausdruck um.
Schritt 5.3.10
Kürze den gemeinsamen Faktor von .
Schritt 5.3.10.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.10.2
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .