Trigonometrie Beispiele

Ermittle die Umkehrfunktion x-2y+3=0
Schritt 1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3
Vertausche die Variablen.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3
Multipliziere beide Seiten der Gleichung mit .
Schritt 4.4
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.1.1.2
Forme den Ausdruck um.
Schritt 4.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1.1
Wende das Distributivgesetz an.
Schritt 4.4.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.4.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.4.2.1.2.3
Forme den Ausdruck um.
Schritt 5
Replace with to show the final answer.
Schritt 6
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 6.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 6.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 6.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.3.1
Wende das Distributivgesetz an.
Schritt 6.2.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.3.2.2
Forme den Ausdruck um.
Schritt 6.2.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.3.3.2
Forme den Ausdruck um.
Schritt 6.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.1
Subtrahiere von .
Schritt 6.2.4.2
Addiere und .
Schritt 6.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 6.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 6.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.4.1
Addiere und .
Schritt 6.3.4.2
Addiere und .
Schritt 6.3.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.5.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.5.2
Dividiere durch .
Schritt 6.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .