Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Vertausche die Variablen.
Schritt 2
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.1
Vereinfache jeden Term.
Schritt 2.3.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.3.1.2
Multipliziere mit .
Schritt 2.3.3.1.3
Faktorisiere aus heraus.
Schritt 2.3.3.1.4
Separiere Brüche.
Schritt 2.3.3.1.5
Dividiere durch .
Schritt 2.3.3.1.6
Dividiere durch .
Schritt 2.3.3.1.7
Mutltipliziere mit .
Schritt 2.3.3.1.8
Dividiere durch .
Schritt 3
Replace with to show the final answer.
Schritt 4
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereinfache jeden Term.
Schritt 4.2.3.1
Wende das Distributivgesetz an.
Schritt 4.2.3.2
Multipliziere .
Schritt 4.2.3.2.1
Mutltipliziere mit .
Schritt 4.2.3.2.2
Mutltipliziere mit .
Schritt 4.2.3.3
Mutltipliziere mit .
Schritt 4.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 4.2.4.1
Addiere und .
Schritt 4.2.4.2
Addiere und .
Schritt 4.3
Berechne .
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereinfache jeden Term.
Schritt 4.3.3.1
Wende das Distributivgesetz an.
Schritt 4.3.3.2
Multipliziere .
Schritt 4.3.3.2.1
Mutltipliziere mit .
Schritt 4.3.3.2.2
Mutltipliziere mit .
Schritt 4.3.3.3
Mutltipliziere mit .
Schritt 4.3.4
Vereinfache durch Addieren von Zahlen.
Schritt 4.3.4.1
Addiere und .
Schritt 4.3.4.2
Addiere und .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .