Trigonometrie Beispiele

Ermittle die Umkehrfunktion y=tan(-3/4x)
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 2.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Kombiniere und .
Schritt 2.3.1.2
Bringe auf die linke Seite von .
Schritt 2.4
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.5
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.5.1.1.1.2
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.5.1.1.1.3
Faktorisiere aus heraus.
Schritt 2.5.1.1.1.4
Kürze den gemeinsamen Faktor.
Schritt 2.5.1.1.1.5
Forme den Ausdruck um.
Schritt 2.5.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1.2.1
Faktorisiere aus heraus.
Schritt 2.5.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.5.1.1.2.3
Forme den Ausdruck um.
Schritt 2.5.1.1.3
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1.3.1
Mutltipliziere mit .
Schritt 2.5.1.1.3.2
Mutltipliziere mit .
Schritt 2.5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1.1
Kombiniere und .
Schritt 2.5.2.1.2
Bringe auf die linke Seite von .
Schritt 3
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Kombiniere und .
Schritt 4.2.3.2
Bringe auf die linke Seite von .
Schritt 4.2.3.3
Da eine ungerade Funktion ist, schreibe als .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.3.3.2
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.3.3.3
Faktorisiere aus heraus.
Schritt 4.3.3.4
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.5
Forme den Ausdruck um.
Schritt 4.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Faktorisiere aus heraus.
Schritt 4.3.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.3
Forme den Ausdruck um.
Schritt 4.3.5
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.5.1
Mutltipliziere mit .
Schritt 4.3.5.2
Mutltipliziere mit .
Schritt 4.3.6
Die Funktionen Tangens und Arkustangens sind Inverse.
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .