Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2
Schritt 2.1
Setze gleich .
Schritt 2.2
Löse nach auf.
Schritt 2.2.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2.2.2
Vereinfache die rechte Seite.
Schritt 2.2.2.1
Der genau Wert von ist .
Schritt 2.2.3
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 2.2.4
Subtrahiere von .
Schritt 2.2.5
Ermittele die Periode von .
Schritt 2.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 2.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.2.5.4
Dividiere durch .
Schritt 2.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 3
Schritt 3.1
Setze gleich .
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Der genau Wert von ist .
Schritt 3.2.3
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 3.2.4
Vereinfache .
Schritt 3.2.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.4.2
Kombiniere Brüche.
Schritt 3.2.4.2.1
Kombiniere und .
Schritt 3.2.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.4.3
Vereinfache den Zähler.
Schritt 3.2.4.3.1
Mutltipliziere mit .
Schritt 3.2.4.3.2
Subtrahiere von .
Schritt 3.2.5
Ermittele die Periode von .
Schritt 3.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 3.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.5.4
Dividiere durch .
Schritt 3.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 4
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl
Schritt 5
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
Schritt 6
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 7
Schritt 7.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 7.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 7.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 7.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 7.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 7.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 7.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 7.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.4.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 7.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Falsch
Wahr
Falsch
Wahr
Falsch
Schritt 8
Die Lösung besteht aus allen wahren Intervallen.
oder , für jede Ganzzahl
Schritt 9
Vereine die Intervalle.
, für jede ganze Zahl
Schritt 10