Trigonometrie Beispiele

x 구하기 (( Quadratwurzel von pi)/6)^2+sin(x)=1
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Wende die Produktregel auf an.
Schritt 1.2
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Benutze , um als neu zu schreiben.
Schritt 1.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.3
Kombiniere und .
Schritt 1.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2
Forme den Ausdruck um.
Schritt 1.2.5
Vereinfache.
Schritt 1.3
Potenziere mit .
Schritt 2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne .
Schritt 5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Entferne die Klammern.
Schritt 6.2
Entferne die Klammern.
Schritt 6.3
Subtrahiere von .
Schritt 7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.4
Dividiere durch .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl