Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 2
Schritt 2.1
Potenziere mit .
Schritt 2.2
Faktorisiere aus heraus.
Schritt 2.3
Faktorisiere aus heraus.
Schritt 2.4
Faktorisiere aus heraus.
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 4.2.2
Vereinfache die rechte Seite.
Schritt 4.2.2.1
Der genau Wert von ist .
Schritt 4.2.3
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 4.2.4
Subtrahiere von .
Schritt 4.2.5
Ermittele die Periode von .
Schritt 4.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.5.4
Dividiere durch .
Schritt 4.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 5
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Schritt 5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.1.2
Dividiere durch .
Schritt 5.2.2.3
Vereinfache die rechte Seite.
Schritt 5.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.3
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 5.2.4
Vereinfache die rechte Seite.
Schritt 5.2.4.1
Der genau Wert von ist .
Schritt 5.2.5
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 5.2.6
Vereinfache .
Schritt 5.2.6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.6.2
Kombiniere Brüche.
Schritt 5.2.6.2.1
Kombiniere und .
Schritt 5.2.6.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.6.3
Vereinfache den Zähler.
Schritt 5.2.6.3.1
Mutltipliziere mit .
Schritt 5.2.6.3.2
Subtrahiere von .
Schritt 5.2.7
Ermittele die Periode von .
Schritt 5.2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 5.2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2.7.4
Dividiere durch .
Schritt 5.2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl
Schritt 7
Führe und zu zusammen.
, für jede ganze Zahl
Schritt 8
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 9
Schritt 9.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 9.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 9.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 9.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.4.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 9.5
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.5.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.5.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.5.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 9.6
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Falsch
Wahr
Schritt 10
Die Lösung besteht aus allen wahren Intervallen.
or or , for any integer
Schritt 11
Vereine die Intervalle.
, für jede ganze Zahl
Schritt 12