Trigonometrie Beispiele

x 구하기 x(1- natürlicher Logarithmus von x)>0
Schritt 1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2
Setze gleich .
Schritt 3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze gleich .
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.2.2.2.2
Dividiere durch .
Schritt 3.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.3.1
Dividiere durch .
Schritt 3.2.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.2.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.2.5
Schreibe die Gleichung als um.
Schritt 4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 5
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 5.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 6
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 7
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.1.3
Bestimme, ob die Ungleichung erfüllt ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.3.1
Die Gleichung kann nicht gelöst werden, da sie nicht definiert ist.
Schritt 7.1.3.2
Die linke Seite hat keine Lösung, was bedeutet, dass die gegebene Aussage falsch ist.
False
False
False
Schritt 7.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 7.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.3.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 7.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 8
Die Lösung besteht aus allen wahren Intervallen.
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 10