Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Stelle so um, dass auf der linken Seite der Ungleichung steht.
Schritt 2
Wandle die Ungleichung in eine Gleichung um.
Schritt 3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Faktorisiere aus heraus.
Schritt 4.3
Faktorisiere aus heraus.
Schritt 4.4
Faktorisiere aus heraus.
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Schritt 5.3.1
Dividiere durch .
Schritt 6
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 7
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 8
Schritt 8.1
Vereinfache den Zähler.
Schritt 8.1.1
Potenziere mit .
Schritt 8.1.2
Multipliziere .
Schritt 8.1.2.1
Mutltipliziere mit .
Schritt 8.1.2.2
Mutltipliziere mit .
Schritt 8.1.3
Subtrahiere von .
Schritt 8.1.4
Schreibe als um.
Schritt 8.1.4.1
Faktorisiere aus heraus.
Schritt 8.1.4.2
Schreibe als um.
Schritt 8.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 8.2
Mutltipliziere mit .
Schritt 8.3
Vereinfache .
Schritt 9
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 10
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 11
Schritt 11.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.1.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 11.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 11.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.3.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 11.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 12
Die Lösung besteht aus allen wahren Intervallen.
Schritt 13
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 14