Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Da auf der rechten Seite der Gleichung ist, vertausche die Seiten, sodass es auf der linken Seite ist.
Schritt 2
Ersetze die durch basierend auf der -Identitätsgleichung.
Schritt 3
Schritt 3.1
Addiere und .
Schritt 3.2
Addiere und .
Schritt 4
Ersetze durch .
Schritt 5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Faktorisiere aus heraus.
Schritt 6.3
Faktorisiere aus heraus.
Schritt 7
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 8
Setze gleich .
Schritt 9
Schritt 9.1
Setze gleich .
Schritt 9.2
Addiere zu beiden Seiten der Gleichung.
Schritt 10
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 11
Ersetze durch .
Schritt 12
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 13
Schritt 13.1
Der Wertebereich des Kosekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 14
Schritt 14.1
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 14.2
Vereinfache die rechte Seite.
Schritt 14.2.1
Der genau Wert von ist .
Schritt 14.3
Die Kosekansfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 14.4
Vereinfache .
Schritt 14.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 14.4.2
Kombiniere Brüche.
Schritt 14.4.2.1
Kombiniere und .
Schritt 14.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 14.4.3
Vereinfache den Zähler.
Schritt 14.4.3.1
Bringe auf die linke Seite von .
Schritt 14.4.3.2
Subtrahiere von .
Schritt 14.5
Ermittele die Periode von .
Schritt 14.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 14.5.2
Ersetze durch in der Formel für die Periode.
Schritt 14.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 14.5.4
Dividiere durch .
Schritt 14.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 15
Liste alle Lösungen auf.
, für jede Ganzzahl