Trigonometrie Beispiele

Stelle graphisch dar y=4cos(3x+pi/2)
Schritt 1
Wende die Form an, um die Variablen, die zur Ermittlung von Amplitude, Periode, Phasenverschiebung und vertikaler Verschiebung genutzt werden, zu bestimmen.
Schritt 2
Bestimme die Amplitude .
Amplitude:
Schritt 3
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2
Ersetze durch in der Formel für die Periode.
Schritt 3.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4
Ermittle die Phasenverschiebung mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Die Phasenverschiebung der Funktion kann mithilfe von berechnet werden.
Phasenverschiebung:
Schritt 4.2
Ersetze die Werte von und in der Gleichung für die Phasenverschiebung.
Phasenverschiebung:
Schritt 4.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Phasenverschiebung:
Schritt 4.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Mutltipliziere mit .
Phasenverschiebung:
Schritt 4.4.2
Mutltipliziere mit .
Phasenverschiebung:
Phasenverschiebung:
Phasenverschiebung:
Schritt 5
Liste die Eigenschaften der trigonometrischen Funktion auf.
Amplitude:
Periode:
Phasenverschiebung: ( nach links)
Vertikale Verschiebung: Keine
Schritt 6
Wähle einige Punkte aus, um den Graphen zu zeichnen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.1.2.1.1.2
Faktorisiere aus heraus.
Schritt 6.1.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 6.1.2.1.1.4
Forme den Ausdruck um.
Schritt 6.1.2.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.1.2.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.2.2.2
Addiere und .
Schritt 6.1.2.2.3
Dividiere durch .
Schritt 6.1.2.3
Der genau Wert von ist .
Schritt 6.1.2.4
Mutltipliziere mit .
Schritt 6.1.2.5
Die endgültige Lösung ist .
Schritt 6.2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Mutltipliziere mit .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.2.3
Der genau Wert von ist .
Schritt 6.2.2.4
Mutltipliziere mit .
Schritt 6.2.2.5
Die endgültige Lösung ist .
Schritt 6.3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Faktorisiere aus heraus.
Schritt 6.3.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.3
Forme den Ausdruck um.
Schritt 6.3.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.3.2.3
Addiere und .
Schritt 6.3.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.4.2
Dividiere durch .
Schritt 6.3.2.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 6.3.2.6
Der genau Wert von ist .
Schritt 6.3.2.7
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.7.1
Mutltipliziere mit .
Schritt 6.3.2.7.2
Mutltipliziere mit .
Schritt 6.3.2.8
Die endgültige Lösung ist .
Schritt 6.4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.2
Forme den Ausdruck um.
Schritt 6.4.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.4.2.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.3.1
Kombiniere und .
Schritt 6.4.2.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.4.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.4.1
Bringe auf die linke Seite von .
Schritt 6.4.2.4.2
Addiere und .
Schritt 6.4.2.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 6.4.2.6
Der genau Wert von ist .
Schritt 6.4.2.7
Mutltipliziere mit .
Schritt 6.4.2.8
Die endgültige Lösung ist .
Schritt 6.5
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1
Kombiniere und .
Schritt 6.5.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.5.2.3
Addiere und .
Schritt 6.5.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.4.1
Faktorisiere aus heraus.
Schritt 6.5.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.4.2.1
Faktorisiere aus heraus.
Schritt 6.5.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.5.2.4.2.3
Forme den Ausdruck um.
Schritt 6.5.2.4.2.4
Dividiere durch .
Schritt 6.5.2.5
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 6.5.2.6
Der genau Wert von ist .
Schritt 6.5.2.7
Mutltipliziere mit .
Schritt 6.5.2.8
Die endgültige Lösung ist .
Schritt 6.6
Erfasse die Punkte in einer Tabelle.
Schritt 7
Die trigonometrische Funktion kann mithilfe der Amplitude, Periode, Phasenverschiebung, vertikalen Verschiebung und den Punkten graphisch dargestellt werden.
Amplitude:
Periode:
Phasenverschiebung: ( nach links)
Vertikale Verschiebung: Keine
Schritt 8