Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Löse die Gleichung , um die -Koordinate der Absolutwert-Spitze zu ermitteln.
Schritt 1.2.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 1.2.2
Vereinfache die rechte Seite.
Schritt 1.2.2.1
Der genau Wert von ist .
Schritt 1.2.3
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 1.2.4
Subtrahiere von .
Schritt 1.2.5
Ermittele die Periode von .
Schritt 1.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.2.5.4
Dividiere durch .
Schritt 1.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 1.2.7
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Die Absolutwert-Spitze ist .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4