Trigonometrie Beispiele

Wandle in die trigonometrische Form um (2-2i)^2
Schritt 1
Schreibe als um.
Schritt 2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende das Distributivgesetz an.
Schritt 2.2
Wende das Distributivgesetz an.
Schritt 2.3
Wende das Distributivgesetz an.
Schritt 3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Mutltipliziere mit .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.1.3
Mutltipliziere mit .
Schritt 3.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.4.1
Mutltipliziere mit .
Schritt 3.1.4.2
Potenziere mit .
Schritt 3.1.4.3
Potenziere mit .
Schritt 3.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.1.4.5
Addiere und .
Schritt 3.1.5
Schreibe als um.
Schritt 3.1.6
Mutltipliziere mit .
Schritt 3.2
Subtrahiere von .
Schritt 3.3
Subtrahiere von .
Schritt 3.4
Subtrahiere von .
Schritt 4
Das ist die trigonometrische Form einer komplexen Zahl, wobei der Betrag und der Winkel, der in der komplexen Ebene entsteht, ist.
Schritt 5
Der Betrag einer komplexen Zahl ist der Abstand vom Ursprung in der komplexen Zahlenebene.
, wobei
Schritt 6
Ersetze die tatsächlichen Werte von und .
Schritt 7
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Potenziere mit .
Schritt 7.2
Schreibe als um.
Schritt 7.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 8
Der Winkel des Punkts in der komplexen Zahlenebene ist der inverse Tangens des Imaginärteils geteilt durch den Realteil.
Schritt 9
Da das Argument nicht definiert ist und negativ ist, ist der Winkel des Punktes in der komplexen Ebene .
Schritt 10
Substituiere die Werte von und .