Trigonometrie Beispiele

Wandle in die trigonometrische Form um 7i^243+10i^986
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus.
Schritt 1.1.2
Schreibe als um.
Schritt 1.1.3
Faktorisiere aus.
Schritt 1.2
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe als um.
Schritt 1.2.2
Schreibe als um.
Schritt 1.2.3
Potenziere mit .
Schritt 1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.4
Mutltipliziere mit .
Schritt 1.5
Schreibe als um.
Schritt 1.6
Schreibe als um.
Schritt 1.7
Mutltipliziere mit .
Schritt 1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.8.1
Faktorisiere aus.
Schritt 1.8.2
Schreibe als um.
Schritt 1.9
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.9.1
Schreibe als um.
Schritt 1.9.2
Schreibe als um.
Schritt 1.9.3
Potenziere mit .
Schritt 1.10
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.11
Mutltipliziere mit .
Schritt 1.12
Schreibe als um.
Schritt 1.13
Mutltipliziere mit .
Schritt 2
Stelle und um.
Schritt 3
Das ist die trigonometrische Form einer komplexen Zahl, wobei der Betrag und der Winkel, der in der komplexen Ebene entsteht, ist.
Schritt 4
Der Betrag einer komplexen Zahl ist der Abstand vom Ursprung in der komplexen Zahlenebene.
, wobei
Schritt 5
Ersetze die tatsächlichen Werte von und .
Schritt 6
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Potenziere mit .
Schritt 6.2
Potenziere mit .
Schritt 6.3
Addiere und .
Schritt 7
Der Winkel des Punkts in der komplexen Zahlenebene ist der inverse Tangens des Imaginärteils geteilt durch den Realteil.
Schritt 8
Da der inverse Tangens von einen Winkel im dritten Quadranten ergibt, ist der Wert des Winkels .
Schritt 9
Substituiere die Werte von und .