Trigonometrie Beispiele

Wandle in kartesische Koordinaten um (-2,-pi/4)
Schritt 1
Benutze die Umrechnungsformeln, um von Polarkoordinaten in kartesische Koordinaten umzurechnen.
Schritt 2
Setze die bekannten Werte von und in die Formeln ein.
Schritt 3
Addiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 4
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 5
Der genau Wert von ist .
Schritt 6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze den gemeinsamen Faktor.
Schritt 6.3
Forme den Ausdruck um.
Schritt 7
Schreibe als um.
Schritt 8
Addiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 9
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 10
Der genau Wert von ist .
Schritt 11
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 11.2
Faktorisiere aus heraus.
Schritt 11.3
Kürze den gemeinsamen Faktor.
Schritt 11.4
Forme den Ausdruck um.
Schritt 12
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Mutltipliziere mit .
Schritt 12.2
Mutltipliziere mit .
Schritt 13
Die kartesische Darstellung des Punktes mit den Polarkoordinaten ist .