Trigonometrie Beispiele

Wandle in Intervallschreibweise um sin(x)>cos(x)
Schritt 1
Teile jeden Term in der Gleichung durch .
Schritt 2
Wandle von nach um.
Schritt 3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2
Forme den Ausdruck um.
Schritt 4
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 5
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Der genau Wert von ist .
Schritt 6
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 7
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kombiniere und .
Schritt 7.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Bringe auf die linke Seite von .
Schritt 7.3.2
Addiere und .
Schritt 8
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.2
Ersetze durch in der Formel für die Periode.
Schritt 8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.4
Dividiere durch .
Schritt 9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 10
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 11
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 11.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 11.3
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Falsch
Schritt 12
Die Lösung besteht aus allen wahren Intervallen.
, für jede ganze Zahl
Schritt 13
Notiere die Ungleichung in Intervallschreibweise.
Schritt 14