Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 2
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Schritt 3.1
Addiere auf beiden Seiten der Ungleichung.
Schritt 3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Mutltipliziere mit .
Schritt 3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.5
Vereinfache den Zähler.
Schritt 3.5.1
Bringe auf die linke Seite von .
Schritt 3.5.2
Addiere und .
Schritt 4
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Schritt 4.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.2
Kürze den gemeinsamen Faktor von .
Schritt 4.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.3
Forme den Ausdruck um.
Schritt 5
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 6
Schritt 6.1
Vereinfache .
Schritt 6.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.1.2
Kombiniere Brüche.
Schritt 6.1.2.1
Kombiniere und .
Schritt 6.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.3
Vereinfache den Zähler.
Schritt 6.1.3.1
Bringe auf die linke Seite von .
Schritt 6.1.3.2
Addiere und .
Schritt 6.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 6.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 6.2.3.1
Mutltipliziere mit .
Schritt 6.2.3.2
Mutltipliziere mit .
Schritt 6.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.5
Vereinfache den Zähler.
Schritt 6.2.5.1
Bringe auf die linke Seite von .
Schritt 6.2.5.2
Addiere und .
Schritt 6.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.3.1
Teile jeden Ausdruck in durch .
Schritt 6.3.2
Vereinfache die linke Seite.
Schritt 6.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.2
Dividiere durch .
Schritt 6.3.3
Vereinfache die rechte Seite.
Schritt 6.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.3.3.2
Multipliziere .
Schritt 6.3.3.2.1
Mutltipliziere mit .
Schritt 6.3.3.2.2
Mutltipliziere mit .
Schritt 7
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
Schritt 10
Schritt 10.1
Setze das Argument in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
, für jede ganze Zahl
Schritt 10.2
Löse nach auf.
Schritt 10.2.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 10.2.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 10.2.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.2.1.3
Addiere und .
Schritt 10.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 10.2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.1.4.2
Dividiere durch .
Schritt 10.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 10.2.2.1
Teile jeden Ausdruck in durch .
Schritt 10.2.2.2
Vereinfache die linke Seite.
Schritt 10.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 10.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2.2.1.2
Dividiere durch .
Schritt 10.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 11
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 12
Schritt 12.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 12.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 12.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 12.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 12.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 12.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 12.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 12.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 12.3
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Falsch
Schritt 13
Die Lösung besteht aus allen wahren Intervallen.
, für jede ganze Zahl
Schritt 14
Notiere die Ungleichung in Intervallschreibweise.
Schritt 15