Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Beginne auf der linken Seite.
Schritt 2
Schritt 2.1
Schreibe mit Sinus und Kosinus mithilfe der Quotienten-Identitätsgleichung.
Schritt 2.2
Schreibe mit Sinus und Kosinus mithilfe der Quotienten-Identitätsgleichung.
Schritt 2.3
Schreibe mit Sinus und Kosinus mithilfe der Quotienten-Identitätsgleichung.
Schritt 2.4
Schreibe mit Sinus und Kosinus mithilfe der Quotienten-Identitätsgleichung.
Schritt 3
Schritt 3.1
Multiply the numerator and denominator of the fraction by .
Schritt 3.1.1
Mutltipliziere mit .
Schritt 3.1.2
Kombinieren.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Vereinfache durch Kürzen.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.3
Forme den Ausdruck um.
Schritt 3.3.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.3
Forme den Ausdruck um.
Schritt 3.4
Vereinfache den Nenner.
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Faktorisiere aus heraus.
Schritt 3.4.1.3
Faktorisiere aus heraus.
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 3.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.5
Kombiniere Exponenten.
Schritt 3.4.5.1
Kombiniere und .
Schritt 3.4.5.2
Kombiniere und .
Schritt 3.4.6
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 3.4.6.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.6.2
Forme den Ausdruck um.
Schritt 3.4.7
Kürze den gemeinsamen Faktor von .
Schritt 3.4.7.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.7.2
Dividiere durch .
Schritt 3.5
Stelle die Faktoren in um.
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Faktorisiere aus heraus.
Schritt 4.3
Faktorisiere aus heraus.
Schritt 4.4
Schreibe als um.
Schritt 4.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Schreibe als um.
Schritt 6
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung