Trigonometrie Beispiele

Ermittle den exakten Wert (2tan(pi/3))/(1-tan(pi/3)^2)
Schritt 1
Der genau Wert von ist .
Schritt 2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Der genau Wert von ist .
Schritt 2.3.2
Der genau Wert von ist .
Schritt 3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende das Distributivgesetz an.
Schritt 3.1.2
Wende das Distributivgesetz an.
Schritt 3.1.3
Wende das Distributivgesetz an.
Schritt 3.2
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Mutltipliziere mit .
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Mutltipliziere mit .
Schritt 3.2.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.4.1
Potenziere mit .
Schritt 3.2.1.4.2
Potenziere mit .
Schritt 3.2.1.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.4.4
Addiere und .
Schritt 3.2.1.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.1
Benutze , um als neu zu schreiben.
Schritt 3.2.1.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.5.3
Kombiniere und .
Schritt 3.2.1.5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.5.4.2
Forme den Ausdruck um.
Schritt 3.2.1.5.5
Berechne den Exponenten.
Schritt 3.2.1.6
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.2.3
Addiere und .
Schritt 3.2.4
Addiere und .
Schritt 4
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Bringe die negative Eins aus dem Nenner von .
Schritt 4.2
Schreibe als um.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: