Trigonometrie Beispiele

Ermittle den exakten Wert (sin(-(5pi)/6))/(cos(-(5pi)/6))
Schritt 1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Addiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 1.2
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im dritten Quadranten negativ ist.
Schritt 1.3
Der genau Wert von ist .
Schritt 2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 2.2
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im dritten Quadranten negativ ist.
Schritt 2.3
Der genau Wert von ist .
Schritt 3
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kürze den gemeinsamen Faktor.
Schritt 5.2
Forme den Ausdruck um.
Schritt 6
Mutltipliziere mit .
Schritt 7
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Potenziere mit .
Schritt 7.3
Potenziere mit .
Schritt 7.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.5
Addiere und .
Schritt 7.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.1
Benutze , um als neu zu schreiben.
Schritt 7.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.6.3
Kombiniere und .
Schritt 7.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.6.4.2
Forme den Ausdruck um.
Schritt 7.6.5
Berechne den Exponenten.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: