Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 3
Schritt 3.1
Der genau Wert von ist .
Schritt 4
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Schritt 4.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.2
Multipliziere .
Schritt 4.3.2.1
Mutltipliziere mit .
Schritt 4.3.2.2
Mutltipliziere mit .
Schritt 5
DIe Sekans-Funktion ist im ersten und vierten Quadranten positiv. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 6
Schritt 6.1
Vereinfache.
Schritt 6.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.1.2
Kombiniere und .
Schritt 6.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.1.5
Subtrahiere von .
Schritt 6.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.2.1
Teile jeden Ausdruck in durch .
Schritt 6.2.2
Vereinfache die linke Seite.
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.2
Dividiere durch .
Schritt 6.2.3
Vereinfache die rechte Seite.
Schritt 6.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.2.3.2
Kürze den gemeinsamen Faktor von .
Schritt 6.2.3.2.1
Faktorisiere aus heraus.
Schritt 6.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.3.2.3
Forme den Ausdruck um.
Schritt 7
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl