Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 2
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 3.4.1
Mutltipliziere mit .
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.4.4
Mutltipliziere mit .
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Vereinfache den Zähler.
Schritt 3.6.1
Bringe auf die linke Seite von .
Schritt 3.6.2
Bringe auf die linke Seite von .
Schritt 3.6.3
Addiere und .
Schritt 4
Multipliziere beide Seiten der Gleichung mit .
Schritt 5
Schritt 5.1
Vereinfache die linke Seite.
Schritt 5.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.1.2
Forme den Ausdruck um.
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1
Faktorisiere aus heraus.
Schritt 5.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.3
Forme den Ausdruck um.
Schritt 6
Die Kotangens-Funktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu ermitteln, addiere den Referenzwinkel aus , um die Lösung im vierten Quadranten zu bestimmen.
Schritt 7
Schritt 7.1
Vereinfache .
Schritt 7.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.1.2
Kombiniere Brüche.
Schritt 7.1.2.1
Kombiniere und .
Schritt 7.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.1.3
Vereinfache den Zähler.
Schritt 7.1.3.1
Bringe auf die linke Seite von .
Schritt 7.1.3.2
Addiere und .
Schritt 7.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 7.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 7.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 7.2.4.1
Mutltipliziere mit .
Schritt 7.2.4.2
Mutltipliziere mit .
Schritt 7.2.4.3
Mutltipliziere mit .
Schritt 7.2.4.4
Mutltipliziere mit .
Schritt 7.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.6
Vereinfache den Zähler.
Schritt 7.2.6.1
Mutltipliziere mit .
Schritt 7.2.6.2
Bringe auf die linke Seite von .
Schritt 7.2.6.3
Addiere und .
Schritt 7.3
Multipliziere beide Seiten der Gleichung mit .
Schritt 7.4
Vereinfache beide Seiten der Gleichung.
Schritt 7.4.1
Vereinfache die linke Seite.
Schritt 7.4.1.1
Kürze den gemeinsamen Faktor von .
Schritt 7.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.4.1.1.2
Forme den Ausdruck um.
Schritt 7.4.2
Vereinfache die rechte Seite.
Schritt 7.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.4.2.1.1
Faktorisiere aus heraus.
Schritt 7.4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 7.4.2.1.3
Forme den Ausdruck um.
Schritt 8
Schritt 8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.2
Ersetze durch in der Formel für die Periode.
Schritt 8.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 8.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 8.5
Bringe auf die linke Seite von .
Schritt 9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 10
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl