Trigonometrie Beispiele

Stelle graphisch dar y=-1+6cos((2pi)/7*(x-5))
Schritt 1
Schreibe den Ausdruck zu um.
Schritt 2
Wende die Form an, um die Variablen, die zur Ermittlung von Amplitude, Periode, Phasenverschiebung und vertikaler Verschiebung genutzt werden, zu bestimmen.
Schritt 3
Bestimme die Amplitude .
Amplitude:
Schritt 4
Ermittle die Periode mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.1.2
Ersetze durch in der Formel für die Periode.
Schritt 4.1.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 4.1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.5.2
Forme den Ausdruck um.
Schritt 4.2
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 4.2.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.2.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.5.2
Forme den Ausdruck um.
Schritt 4.3
Die Periode der Summe/Differenz trigonometrischer Funktionen ist das Maximum der individuellen Perioden.
Schritt 5
Ermittle die Phasenverschiebung mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Die Phasenverschiebung der Funktion kann mithilfe von berechnet werden.
Phasenverschiebung:
Schritt 5.2
Ersetze die Werte von und in der Gleichung für die Phasenverschiebung.
Phasenverschiebung:
Schritt 5.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Phasenverschiebung:
Schritt 5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Faktorisiere aus heraus.
Phasenverschiebung:
Schritt 5.4.2
Kürze den gemeinsamen Faktor.
Phasenverschiebung:
Schritt 5.4.3
Forme den Ausdruck um.
Phasenverschiebung:
Phasenverschiebung:
Schritt 5.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Kürze den gemeinsamen Faktor.
Phasenverschiebung:
Schritt 5.5.2
Forme den Ausdruck um.
Phasenverschiebung:
Phasenverschiebung:
Phasenverschiebung:
Schritt 6
Liste die Eigenschaften der trigonometrischen Funktion auf.
Amplitude:
Periode:
Phasenverschiebung: ( nach rechts)
Vertikale Verschiebung:
Schritt 7
Wähle einige Punkte aus, um den Graphen zu zeichnen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.1.2.1.2
Mutltipliziere mit .
Schritt 7.1.2.1.3
Subtrahiere von .
Schritt 7.1.2.1.4
Dividiere durch .
Schritt 7.1.2.1.5
Der genau Wert von ist .
Schritt 7.1.2.1.6
Mutltipliziere mit .
Schritt 7.1.2.2
Addiere und .
Schritt 7.1.2.3
Die endgültige Lösung ist .
Schritt 7.2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.2.1.1
Faktorisiere aus heraus.
Schritt 7.2.2.1.2.1.2
Faktorisiere aus heraus.
Schritt 7.2.2.1.2.1.3
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.1.2.1.4
Forme den Ausdruck um.
Schritt 7.2.2.1.2.2
Kombiniere und .
Schritt 7.2.2.1.2.3
Bringe auf die linke Seite von .
Schritt 7.2.2.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.2.1.4
Kombiniere und .
Schritt 7.2.2.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.2.1.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.6.1
Mutltipliziere mit .
Schritt 7.2.2.1.6.2
Subtrahiere von .
Schritt 7.2.2.1.7
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.2.2.1.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.8.1
Faktorisiere aus heraus.
Schritt 7.2.2.1.8.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.1.8.3
Forme den Ausdruck um.
Schritt 7.2.2.1.9
Der genau Wert von ist .
Schritt 7.2.2.1.10
Mutltipliziere mit .
Schritt 7.2.2.2
Addiere und .
Schritt 7.2.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.3.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1.2.1.1
Faktorisiere aus heraus.
Schritt 7.3.2.1.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.1.2.1.3
Forme den Ausdruck um.
Schritt 7.3.2.1.2.2
Bringe auf die linke Seite von .
Schritt 7.3.2.1.3
Subtrahiere von .
Schritt 7.3.2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.1.4.2
Dividiere durch .
Schritt 7.3.2.1.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 7.3.2.1.6
Der genau Wert von ist .
Schritt 7.3.2.1.7
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1.7.1
Mutltipliziere mit .
Schritt 7.3.2.1.7.2
Mutltipliziere mit .
Schritt 7.3.2.2
Subtrahiere von .
Schritt 7.3.2.3
Die endgültige Lösung ist .
Schritt 7.4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.4.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1.2.1.1
Faktorisiere aus heraus.
Schritt 7.4.2.1.2.1.2
Faktorisiere aus heraus.
Schritt 7.4.2.1.2.1.3
Kürze den gemeinsamen Faktor.
Schritt 7.4.2.1.2.1.4
Forme den Ausdruck um.
Schritt 7.4.2.1.2.2
Kombiniere und .
Schritt 7.4.2.1.2.3
Bringe auf die linke Seite von .
Schritt 7.4.2.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.4.2.1.4
Kombiniere und .
Schritt 7.4.2.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.4.2.1.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1.6.1
Mutltipliziere mit .
Schritt 7.4.2.1.6.2
Subtrahiere von .
Schritt 7.4.2.1.7
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.4.2.1.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1.8.1
Faktorisiere aus heraus.
Schritt 7.4.2.1.8.2
Kürze den gemeinsamen Faktor.
Schritt 7.4.2.1.8.3
Forme den Ausdruck um.
Schritt 7.4.2.1.9
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 7.4.2.1.10
Der genau Wert von ist .
Schritt 7.4.2.1.11
Mutltipliziere mit .
Schritt 7.4.2.2
Addiere und .
Schritt 7.4.2.3
Die endgültige Lösung ist .
Schritt 7.5
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.5.2.1.2
Mutltipliziere mit .
Schritt 7.5.2.1.3
Subtrahiere von .
Schritt 7.5.2.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.1.4.1
Faktorisiere aus heraus.
Schritt 7.5.2.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.1.4.2.1
Faktorisiere aus heraus.
Schritt 7.5.2.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.5.2.1.4.2.3
Forme den Ausdruck um.
Schritt 7.5.2.1.4.2.4
Dividiere durch .
Schritt 7.5.2.1.5
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 7.5.2.1.6
Der genau Wert von ist .
Schritt 7.5.2.1.7
Mutltipliziere mit .
Schritt 7.5.2.2
Addiere und .
Schritt 7.5.2.3
Die endgültige Lösung ist .
Schritt 7.6
Erfasse die Punkte in einer Tabelle.
Schritt 8
Die trigonometrische Funktion kann mithilfe der Amplitude, Periode, Phasenverschiebung, vertikalen Verschiebung und den Punkten graphisch dargestellt werden.
Amplitude:
Periode:
Phasenverschiebung: ( nach rechts)
Vertikale Verschiebung:
Schritt 9