Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 2
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Da der Ausdruck auf jeder Seite der Gleichung den gleichen Nenner hat, müssen die Zähler gleich sein.
Schritt 4
Die Kotangens-Funktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu ermitteln, addiere den Referenzwinkel aus , um die Lösung im vierten Quadranten zu bestimmen.
Schritt 5
Schritt 5.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 5.2
Vereinfache beide Seiten der Gleichung.
Schritt 5.2.1
Vereinfache die linke Seite.
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache die rechte Seite.
Schritt 5.2.2.1
Vereinfache .
Schritt 5.2.2.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.2.1.2
Vereinfache Terme.
Schritt 5.2.2.1.2.1
Kombiniere und .
Schritt 5.2.2.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.2.1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.1.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2.3.2
Forme den Ausdruck um.
Schritt 5.2.2.1.3
Bringe auf die linke Seite von .
Schritt 5.2.2.1.4
Addiere und .
Schritt 6
Schritt 6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.2
Ersetze durch in der Formel für die Periode.
Schritt 6.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 6.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.5
Bringe auf die linke Seite von .
Schritt 7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 8
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl