Trigonometrie Beispiele

? 구하기 tan(x)=4/(-4 Quadratwurzel von 3)
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Faktorisiere aus heraus.
Schritt 1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.3
Forme den Ausdruck um.
Schritt 1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe als um.
Schritt 1.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3
Mutltipliziere mit .
Schritt 1.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Mutltipliziere mit .
Schritt 1.4.2
Potenziere mit .
Schritt 1.4.3
Potenziere mit .
Schritt 1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.5
Addiere und .
Schritt 1.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.6.1
Benutze , um als neu zu schreiben.
Schritt 1.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.6.3
Kombiniere und .
Schritt 1.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.6.4.2
Forme den Ausdruck um.
Schritt 1.4.6.5
Berechne den Exponenten.
Schritt 2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Der genau Wert von ist .
Schritt 4
Die Tangensfunktion ist negativ im zweiten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 5
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Addiere zu .
Schritt 5.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.2
Ersetze durch in der Formel für die Periode.
Schritt 6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.4
Dividiere durch .
Schritt 7
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 7.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Kombiniere und .
Schritt 7.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Bringe auf die linke Seite von .
Schritt 7.4.2
Subtrahiere von .
Schritt 7.5
Liste die neuen Winkel auf.
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl