Trigonometrie Beispiele

? 구하기 (cot(x)+1)(csc(x)+1)=0
Schritt 1
Vereinfache die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Wende das Distributivgesetz an.
Schritt 1.1.3
Wende das Distributivgesetz an.
Schritt 1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Mutltipliziere mit .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 2
Faktorisiere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.2
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Der genau Wert von ist .
Schritt 4.2.4
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Schritt 4.2.5
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.5.1
Subtrahiere von .
Schritt 4.2.5.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 4.2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.6.4
Dividiere durch .
Schritt 4.2.7
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.7.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 4.2.7.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2.7.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.7.3.1
Kombiniere und .
Schritt 4.2.7.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.7.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.7.4.1
Mutltipliziere mit .
Schritt 4.2.7.4.2
Subtrahiere von .
Schritt 4.2.7.5
Liste die neuen Winkel auf.
Schritt 4.2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2.2
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Der genau Wert von ist .
Schritt 5.2.4
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Schritt 5.2.5
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Addiere zu .
Schritt 5.2.5.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 5.2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 5.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2.6.4
Dividiere durch .
Schritt 5.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl
Schritt 7
Führe und zu zusammen.
, für jede ganze Zahl