Trigonometrie Beispiele

? 구하기 sin(x)^2+2cos(x)=-2
Schritt 1
Ersetze die durch basierend auf der -Identitätsgleichung.
Schritt 2
Stelle das Polynom um.
Schritt 3
Ersetze durch .
Schritt 4
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Addiere und .
Schritt 6
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Faktorisiere aus heraus.
Schritt 6.1.3
Schreibe als um.
Schritt 6.1.4
Faktorisiere aus heraus.
Schritt 6.1.5
Faktorisiere aus heraus.
Schritt 6.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 6.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 6.2.2
Entferne unnötige Klammern.
Schritt 7
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 8
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Setze gleich .
Schritt 8.2
Addiere zu beiden Seiten der Gleichung.
Schritt 9
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Setze gleich .
Schritt 9.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 10
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 11
Ersetze durch .
Schritt 12
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 13
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Der Wertebereich des Cosinus ist . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 14
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 14.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Der genau Wert von ist .
Schritt 14.3
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 14.4
Subtrahiere von .
Schritt 14.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 14.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 14.5.2
Ersetze durch in der Formel für die Periode.
Schritt 14.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 14.5.4
Dividiere durch .
Schritt 14.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 15
Liste alle Lösungen auf.
, für jede ganze Zahl