Trigonometrie Beispiele

? 구하기 cot(x)^2=-5/2*csc(x)-2
Schritt 1
Ersetze die durch basierend auf der -Identitätsgleichung.
Schritt 2
Ersetze durch .
Schritt 3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kombiniere und .
Schritt 3.2
Bringe auf die linke Seite von .
Schritt 4
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2
Addiere und .
Schritt 6
Multipliziere mit dem Hauptnenner aus und vereinfache dann.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.2
Forme den Ausdruck um.
Schritt 6.2.2
Mutltipliziere mit .
Schritt 7
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 8
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Potenziere mit .
Schritt 9.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Mutltipliziere mit .
Schritt 9.1.2.2
Mutltipliziere mit .
Schritt 9.1.3
Subtrahiere von .
Schritt 9.1.4
Schreibe als um.
Schritt 9.1.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 9.2
Mutltipliziere mit .
Schritt 10
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 11
Ersetze durch .
Schritt 12
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 13
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Der Wertebereich des Kosekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 14
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 14.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Der genau Wert von ist .
Schritt 14.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Schritt 14.4
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.4.1
Subtrahiere von .
Schritt 14.4.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 14.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 14.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 14.5.2
Ersetze durch in der Formel für die Periode.
Schritt 14.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 14.5.4
Dividiere durch .
Schritt 14.6
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.6.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 14.6.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 14.6.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.6.3.1
Kombiniere und .
Schritt 14.6.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 14.6.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.6.4.1
Mutltipliziere mit .
Schritt 14.6.4.2
Subtrahiere von .
Schritt 14.6.5
Liste die neuen Winkel auf.
Schritt 14.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 15
Liste alle Lösungen auf.
, für jede ganze Zahl