Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Vereinfache .
Schritt 1.1.1
Da eine ungerade Funktion ist, schreibe als .
Schritt 1.1.2
Mutltipliziere mit .
Schritt 2
Teile jeden Term in der Gleichung durch .
Schritt 3
Schritt 3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2
Dividiere durch .
Schritt 4
Separiere Brüche.
Schritt 5
Wandle von nach um.
Schritt 6
Dividiere durch .
Schritt 7
Schreibe die Gleichung als um.
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Forme den Ausdruck um.
Schritt 8.2.2
Kürze den gemeinsamen Faktor von .
Schritt 8.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Schritt 8.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 8.3.1.1
Faktorisiere aus heraus.
Schritt 8.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 8.3.1.2.1
Faktorisiere aus heraus.
Schritt 8.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.2.3
Forme den Ausdruck um.
Schritt 8.3.2
Kürze den gemeinsamen Teiler von und .
Schritt 8.3.2.1
Schreibe als um.
Schritt 8.3.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 8.3.3
Mutltipliziere mit .
Schritt 8.3.4
Vereinige und vereinfache den Nenner.
Schritt 8.3.4.1
Mutltipliziere mit .
Schritt 8.3.4.2
Potenziere mit .
Schritt 8.3.4.3
Potenziere mit .
Schritt 8.3.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 8.3.4.5
Addiere und .
Schritt 8.3.4.6
Schreibe als um.
Schritt 8.3.4.6.1
Benutze , um als neu zu schreiben.
Schritt 8.3.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.3.4.6.3
Kombiniere und .
Schritt 8.3.4.6.4
Kürze den gemeinsamen Faktor von .
Schritt 8.3.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.4.6.4.2
Forme den Ausdruck um.
Schritt 8.3.4.6.5
Berechne den Exponenten.
Schritt 9
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 10
Schritt 10.1
Der genau Wert von ist .
Schritt 11
Die Tangensfunktion ist negativ im zweiten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 12
Schritt 12.1
Addiere zu .
Schritt 12.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 13
Schritt 13.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 13.2
Ersetze durch in der Formel für die Periode.
Schritt 13.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 13.4
Dividiere durch .
Schritt 14
Schritt 14.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 14.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 14.3
Kombiniere Brüche.
Schritt 14.3.1
Kombiniere und .
Schritt 14.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 14.4
Vereinfache den Zähler.
Schritt 14.4.1
Bringe auf die linke Seite von .
Schritt 14.4.2
Subtrahiere von .
Schritt 14.5
Liste die neuen Winkel auf.
Schritt 15
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 16
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl