Trigonometrie Beispiele

? 구하기 6 Quadratwurzel von 2cos(x+1)=7
Schritt 1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.1.2
Forme den Ausdruck um.
Schritt 1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2
Dividiere durch .
Schritt 1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Mutltipliziere mit .
Schritt 1.3.2.2
Bewege .
Schritt 1.3.2.3
Potenziere mit .
Schritt 1.3.2.4
Potenziere mit .
Schritt 1.3.2.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.2.6
Addiere und .
Schritt 1.3.2.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.7.1
Benutze , um als neu zu schreiben.
Schritt 1.3.2.7.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.2.7.3
Kombiniere und .
Schritt 1.3.2.7.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.7.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.7.4.2
Forme den Ausdruck um.
Schritt 1.3.2.7.5
Berechne den Exponenten.
Schritt 1.3.3
Mutltipliziere mit .
Schritt 2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne .
Schritt 4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Subtrahiere von .
Schritt 5
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Mutltipliziere mit .
Schritt 6.1.2
Subtrahiere von .
Schritt 6.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.2.2
Subtrahiere von .
Schritt 7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.4
Dividiere durch .
Schritt 8
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 8.2
Subtrahiere von .
Schritt 8.3
Liste die neuen Winkel auf.
Schritt 9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl