Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Vereinige und vereinfache den Nenner.
Schritt 1.2.1
Mutltipliziere mit .
Schritt 1.2.2
Potenziere mit .
Schritt 1.2.3
Potenziere mit .
Schritt 1.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.5
Addiere und .
Schritt 1.2.6
Schreibe als um.
Schritt 1.2.6.1
Benutze , um als neu zu schreiben.
Schritt 1.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.6.3
Kombiniere und .
Schritt 1.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 1.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.4.2
Forme den Ausdruck um.
Schritt 1.2.6.5
Berechne den Exponenten.
Schritt 2
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 3
Schritt 3.1
Der genau Wert von ist .
Schritt 4
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Schritt 5
Schritt 5.1
Subtrahiere von .
Schritt 5.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 6
Schritt 6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.2
Ersetze durch in der Formel für die Periode.
Schritt 6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.4
Dividiere durch .
Schritt 7
Schritt 7.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 7.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.3
Kombiniere Brüche.
Schritt 7.3.1
Kombiniere und .
Schritt 7.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.4
Vereinfache den Zähler.
Schritt 7.4.1
Mutltipliziere mit .
Schritt 7.4.2
Subtrahiere von .
Schritt 7.5
Liste die neuen Winkel auf.
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl