Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 1.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.4
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 1.5
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.6
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.8
Die Teiler von sind , was -mal mit sich selbst multipliziert ist.
tritt -mal auf.
Schritt 1.9
Der Teiler von ist selbst.
occurs time.
Schritt 1.10
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.11
Mutltipliziere mit .
Schritt 1.12
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.3
Forme den Ausdruck um.
Schritt 2.2.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2
Forme den Ausdruck um.
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Vereinfache jeden Term.
Schritt 2.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.3.1.2
Kombiniere und .
Schritt 2.3.1.3
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.3.1
Faktorisiere aus heraus.
Schritt 2.3.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.3.3
Forme den Ausdruck um.
Schritt 2.3.1.4
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.1.4.2
Faktorisiere aus heraus.
Schritt 2.3.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.4.4
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Faktorisiere die linke Seite der Gleichung.
Schritt 3.3.1
Faktorisiere aus heraus.
Schritt 3.3.1.1
Stelle und um.
Schritt 3.3.1.2
Faktorisiere aus heraus.
Schritt 3.3.1.3
Faktorisiere aus heraus.
Schritt 3.3.1.4
Schreibe als um.
Schritt 3.3.1.5
Faktorisiere aus heraus.
Schritt 3.3.1.6
Faktorisiere aus heraus.
Schritt 3.3.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 3.3.2.1
Schreibe als um.
Schritt 3.3.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.3.2.3
Schreibe das Polynom neu.
Schritt 3.3.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.4.2.2
Dividiere durch .
Schritt 3.4.3
Vereinfache die rechte Seite.
Schritt 3.4.3.1
Dividiere durch .
Schritt 3.5
Setze gleich .
Schritt 3.6
Addiere zu beiden Seiten der Gleichung.