Trigonometrie Beispiele

x 구하기 cos(x)^2-3sin(x)^2=0
Schritt 1
Ersetze die durch basierend auf der -Identitätsgleichung.
Schritt 2
Subtrahiere von .
Schritt 3
Stelle das Polynom um.
Schritt 4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 7
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Schreibe als um.
Schritt 7.2
Jede Wurzel von ist .
Schritt 7.3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Schreibe als um.
Schritt 7.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 8
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 8.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 8.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 9
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 10
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 10.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Der genau Wert von ist .
Schritt 10.3
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 10.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 10.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.4.2.1
Kombiniere und .
Schritt 10.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.4.3.1
Bringe auf die linke Seite von .
Schritt 10.4.3.2
Subtrahiere von .
Schritt 10.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 10.5.2
Ersetze durch in der Formel für die Periode.
Schritt 10.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 10.5.4
Dividiere durch .
Schritt 10.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 11
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 11.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Der genau Wert von ist .
Schritt 11.3
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 11.4
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.1
Subtrahiere von .
Schritt 11.4.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 11.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 11.5.2
Ersetze durch in der Formel für die Periode.
Schritt 11.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 11.5.4
Dividiere durch .
Schritt 11.6
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.6.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 11.6.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 11.6.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.6.3.1
Kombiniere und .
Schritt 11.6.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.6.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.6.4.1
Mutltipliziere mit .
Schritt 11.6.4.2
Subtrahiere von .
Schritt 11.6.5
Liste die neuen Winkel auf.
Schritt 11.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 12
Liste alle Lösungen auf.
, für jede ganze Zahl
Schritt 13
Fasse die Lösungen zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Führe und zu zusammen.
, für jede ganze Zahl
Schritt 13.2
Führe und zu zusammen.
, für jede ganze Zahl
, für jede ganze Zahl