Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.4
Kombiniere und .
Schritt 1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.6
Vereinfache den Zähler.
Schritt 1.6.1
Mutltipliziere mit .
Schritt 1.6.2
Subtrahiere von .
Schritt 1.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.4
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.8
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.2
Multipliziere .
Schritt 3.2.2.1
Kombiniere und .
Schritt 3.2.2.2
Mutltipliziere mit .
Schritt 3.2.3
Kürze den gemeinsamen Faktor von .
Schritt 3.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.3.2
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.3
Forme den Ausdruck um.
Schritt 3.3.2
Wende das Distributivgesetz an.
Schritt 3.3.3
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2.2
Addiere und .
Schritt 4.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.3.1
Teile jeden Ausdruck in durch .
Schritt 4.3.2
Vereinfache die linke Seite.
Schritt 4.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.2
Dividiere durch .
Schritt 4.3.3
Vereinfache die rechte Seite.
Schritt 4.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.3.1.1
Faktorisiere aus heraus.
Schritt 4.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 4.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 4.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.1.2.3
Forme den Ausdruck um.
Schritt 4.3.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4.5
Vereinfache .
Schritt 4.5.1
Schreibe als um.
Schritt 4.5.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.