Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Bewege .
Schritt 1.2
Wende den trigonometrischen Pythagoras an.
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.2
Faktorisiere aus heraus.
Schritt 2.3
Faktorisiere aus heraus.
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Schritt 4.1
Setze gleich .
Schritt 4.2
Der Wertebereich des Sekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 5
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Schritt 5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2.2
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Der genau Wert von ist .
Schritt 5.2.4
DIe Sekans-Funktion ist im ersten und vierten Quadranten positiv. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 5.2.5
Vereinfache .
Schritt 5.2.5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.5.2
Kombiniere Brüche.
Schritt 5.2.5.2.1
Kombiniere und .
Schritt 5.2.5.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.5.3
Vereinfache den Zähler.
Schritt 5.2.5.3.1
Mutltipliziere mit .
Schritt 5.2.5.3.2
Subtrahiere von .
Schritt 5.2.6
Ermittele die Periode von .
Schritt 5.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 5.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2.6.4
Dividiere durch .
Schritt 5.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl