Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Ersetze die durch basierend auf der -Identitätsgleichung.
Schritt 2
Schritt 2.1
Wende das Distributivgesetz an.
Schritt 2.2
Mutltipliziere mit .
Schritt 3
Stelle das Polynom um.
Schritt 4
Ersetze durch .
Schritt 5
Schritt 5.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Schreibe um als plus
Schritt 5.1.3
Wende das Distributivgesetz an.
Schritt 5.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 5.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 5.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 5.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 6
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 7
Schritt 7.1
Setze gleich .
Schritt 7.2
Löse nach auf.
Schritt 7.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 7.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 7.2.2.1
Teile jeden Ausdruck in durch .
Schritt 7.2.2.2
Vereinfache die linke Seite.
Schritt 7.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.2.1.2
Dividiere durch .
Schritt 8
Schritt 8.1
Setze gleich .
Schritt 8.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 10
Ersetze durch .
Schritt 11
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 12
Schritt 12.1
Der Wertebereich des Kosekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 13
Schritt 13.1
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 13.2
Vereinfache die rechte Seite.
Schritt 13.2.1
Der genau Wert von ist .
Schritt 13.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Schritt 13.4
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 13.4.1
Subtrahiere von .
Schritt 13.4.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 13.5
Ermittele die Periode von .
Schritt 13.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 13.5.2
Ersetze durch in der Formel für die Periode.
Schritt 13.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 13.5.4
Dividiere durch .
Schritt 13.6
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Schritt 13.6.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 13.6.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 13.6.3
Kombiniere Brüche.
Schritt 13.6.3.1
Kombiniere und .
Schritt 13.6.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 13.6.4
Vereinfache den Zähler.
Schritt 13.6.4.1
Mutltipliziere mit .
Schritt 13.6.4.2
Subtrahiere von .
Schritt 13.6.5
Liste die neuen Winkel auf.
Schritt 13.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 14
Liste alle Lösungen auf.
, für jede ganze Zahl