Trigonometrie Beispiele

x 구하기 2 Logarithmus von 50=3 Logarithmus von 25+ Logarithmus von x-2
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 3.1.1.2
Potenziere mit .
Schritt 3.1.1.3
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 3.1.1.4
Potenziere mit .
Schritt 3.1.2
Wende die Produktregel für Logarithmen an, .
Schritt 3.1.3
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 3.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.4.1
Faktorisiere aus heraus.
Schritt 3.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.4.2.1
Faktorisiere aus heraus.
Schritt 3.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.4.2.3
Forme den Ausdruck um.
Schritt 4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 5.3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.1.1.2
Forme den Ausdruck um.
Schritt 5.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.1.2.2
Forme den Ausdruck um.
Schritt 5.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1
Alles, was mit potenziert wird, ist .
Schritt 5.3.2.1.2
Mutltipliziere mit .
Schritt 5.4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.4.3
Kombiniere und .
Schritt 5.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.4.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.5.1
Mutltipliziere mit .
Schritt 5.4.5.2
Addiere und .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: