Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von .
Schritt 2
Addiere zu beiden Seiten der Gleichung.
Schritt 3
Schritt 3.1
Teile jeden Ausdruck in durch .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Dividiere durch .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 3.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2.3
Forme den Ausdruck um.
Schritt 3.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 5
Schritt 5.1
Der genau Wert von ist .
Schritt 6
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Schritt 7
Schritt 7.1
Subtrahiere von .
Schritt 7.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 8
Schritt 8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.2
Ersetze durch in der Formel für die Periode.
Schritt 8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.4
Dividiere durch .
Schritt 9
Schritt 9.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 9.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.3
Kombiniere Brüche.
Schritt 9.3.1
Kombiniere und .
Schritt 9.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.4
Vereinfache den Zähler.
Schritt 9.4.1
Mutltipliziere mit .
Schritt 9.4.2
Subtrahiere von .
Schritt 9.5
Liste die neuen Winkel auf.
Schritt 10
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl