Trigonometrie Beispiele

x 구하기 4sin(x)^2=9cos(x)^2+6cos(x)+1
Schritt 1
Bringe alle Ausdrücke auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Ersetze die durch basierend auf der -Identitätsgleichung.
Schritt 3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von .
Schritt 4.2
Subtrahiere von .
Schritt 5
Ersetze durch .
Schritt 6
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 7
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Potenziere mit .
Schritt 8.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.2.1
Mutltipliziere mit .
Schritt 8.1.2.2
Mutltipliziere mit .
Schritt 8.1.3
Addiere und .
Schritt 8.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.4.1
Faktorisiere aus heraus.
Schritt 8.1.4.2
Schreibe als um.
Schritt 8.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 8.2
Mutltipliziere mit .
Schritt 8.3
Vereinfache .
Schritt 8.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 10
Ersetze durch .
Schritt 11
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 12
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 12.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Berechne .
Schritt 12.3
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 12.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.4.1
Entferne die Klammern.
Schritt 12.4.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.4.2.1
Mutltipliziere mit .
Schritt 12.4.2.2
Subtrahiere von .
Schritt 12.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 12.5.2
Ersetze durch in der Formel für die Periode.
Schritt 12.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 12.5.4
Dividiere durch .
Schritt 12.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 13
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 13.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.2.1
Berechne .
Schritt 13.3
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 13.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.4.1
Entferne die Klammern.
Schritt 13.4.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.4.2.1
Mutltipliziere mit .
Schritt 13.4.2.2
Subtrahiere von .
Schritt 13.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 13.5.2
Ersetze durch in der Formel für die Periode.
Schritt 13.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 13.5.4
Dividiere durch .
Schritt 13.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 14
Liste alle Lösungen auf.
, für jede ganze Zahl