Trigonometrie Beispiele

x 구하기 4cot(x)=cot(x)sin(x)^2
Schritt 1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.1.2
Kombiniere und .
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.3
Forme den Ausdruck um.
Schritt 3
Multipliziere beide Seiten der Gleichung mit .
Schritt 4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2
Forme den Ausdruck um.
Schritt 5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Potenziere mit .
Schritt 5.2
Potenziere mit .
Schritt 5.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.4
Addiere und .
Schritt 6
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7
Faktorisiere .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Faktorisiere aus heraus.
Schritt 7.1.2
Faktorisiere aus heraus.
Schritt 7.1.3
Faktorisiere aus heraus.
Schritt 7.2
Schreibe als um.
Schritt 7.3
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 7.3.2
Entferne unnötige Klammern.
Schritt 8
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 9
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Setze gleich .
Schritt 9.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 9.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.1
Der genau Wert von ist .
Schritt 9.2.3
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 9.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.2.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.4.2.1
Kombiniere und .
Schritt 9.2.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.2.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.4.3.1
Mutltipliziere mit .
Schritt 9.2.4.3.2
Subtrahiere von .
Schritt 9.2.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 9.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 9.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 9.2.5.4
Dividiere durch .
Schritt 9.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 10
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Setze gleich .
Schritt 10.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 10.2.2
Der Wertebereich des Sinus ist . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 11
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl
Schritt 12
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl