Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 3.3
Vereinfache jede Seite der Gleichung.
Schritt 3.3.1
Benutze , um als neu zu schreiben.
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Vereinfache .
Schritt 3.3.2.1.1
Multipliziere die Exponenten in .
Schritt 3.3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.2.1.2
Vereinfache.
Schritt 3.3.3
Vereinfache die rechte Seite.
Schritt 3.3.3.1
Multipliziere die Exponenten in .
Schritt 3.3.3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.3.1.2
Mutltipliziere mit .
Schritt 3.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: