Trigonometrie Beispiele

x 구하기 natürlicher Logarithmus von x+ natürlicher Logarithmus von x-2=0
Schritt 1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Wende die Produktregel für Logarithmen an, .
Schritt 1.2
Wende das Distributivgesetz an.
Schritt 1.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Bringe auf die linke Seite von .
Schritt 2
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Alles, was mit potenziert wird, ist .
Schritt 4.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.4
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 4.5
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1.1
Potenziere mit .
Schritt 4.6.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1.2.1
Mutltipliziere mit .
Schritt 4.6.1.2.2
Mutltipliziere mit .
Schritt 4.6.1.3
Addiere und .
Schritt 4.6.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1.4.1
Faktorisiere aus heraus.
Schritt 4.6.1.4.2
Schreibe als um.
Schritt 4.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 4.6.2
Mutltipliziere mit .
Schritt 4.6.3
Vereinfache .
Schritt 4.7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 5
Schließe die Lösungen aus, die nicht erfüllen.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: