Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Der genau Wert von ist .
Schritt 2
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3
Schritt 3.1
Der genau Wert von ist .
Schritt 4
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Subtrahiere von .
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Schritt 5.3.1
Dividiere durch .
Schritt 6
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 7
Schritt 7.1
Subtrahiere von .
Schritt 7.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 7.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7.2.2
Subtrahiere von .
Schritt 7.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 7.3.1
Teile jeden Ausdruck in durch .
Schritt 7.3.2
Vereinfache die linke Seite.
Schritt 7.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.1.2
Dividiere durch .
Schritt 7.3.3
Vereinfache die rechte Seite.
Schritt 7.3.3.1
Dividiere durch .
Schritt 8
Schritt 8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.2
Ersetze durch in der Formel für die Periode.
Schritt 8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.4
Dividiere durch .
Schritt 9
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede ganze Zahl