Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Schritt 1.2.1
Schreibe die Gleichung als um.
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.3
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 1.2.4
Vereinfache die rechte Seite.
Schritt 1.2.4.1
Berechne .
Schritt 1.2.5
Die Kotangens-Funktion ist im zweiten und vierten Quadranten negativ. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel aus , um die Lösung im dritten Quadranten zu bestimmen.
Schritt 1.2.6
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 1.2.6.1
Addiere zu .
Schritt 1.2.6.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 1.2.7
Ermittele die Periode von .
Schritt 1.2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.2.7.4
Dividiere durch .
Schritt 1.2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 1.2.9
Führe und zu zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schritt 2
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Schritt 2.2.1
Entferne die Klammern.
Schritt 2.2.2
Vereinfache die rechte Seite.
Schritt 2.2.2.1
Vereinfache .
Schritt 2.2.2.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 2.2.2.1.2
Der genau Wert von ist .
Schritt 2.2.2.2
Die Gleichung kann nicht gelöst werden, da sie nicht definiert ist.
Schritt 2.3
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der y-Achse:
Schritt 4