Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Benutze die Definition des Kosinus, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 2
Berechne die Gegenkathete des Dreiecks im Einheitskreis. Da die Ankathete und die Hypotenuse bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 3
Ersetze die bekannten Werte in der Gleichung.
Schritt 4
Schritt 4.1
Kehre das Vorzeichen von um.
Gegenkathete
Schritt 4.2
Potenziere mit .
Gegenkathete
Schritt 4.3
Potenziere mit .
Gegenkathete
Schritt 4.4
Mutltipliziere mit .
Gegenkathete
Schritt 4.5
Subtrahiere von .
Gegenkathete
Schritt 4.6
Schreibe als um.
Gegenkathete
Schritt 4.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Gegenkathete
Schritt 4.8
Mutltipliziere mit .
Gegenkathete
Gegenkathete
Schritt 5
Schritt 5.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 5.2
Setze die bekannten Werte ein.
Schritt 5.3
Vereinfache den Wert von .
Schritt 5.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 5.3.1.1
Faktorisiere aus heraus.
Schritt 5.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 5.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.2.3
Forme den Ausdruck um.
Schritt 5.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze die gemeinsamen Faktoren.
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.3
Forme den Ausdruck um.
Schritt 7
Schritt 7.1
Benutze die Definition des Tangens, um den Wert von zu ermitteln.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Vereinfache den Wert von .
Schritt 7.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 7.3.1.1
Faktorisiere aus heraus.
Schritt 7.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 7.3.1.2.1
Faktorisiere aus heraus.
Schritt 7.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.3.1.2.3
Forme den Ausdruck um.
Schritt 7.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Vereinfache den Wert von .
Schritt 8.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 8.3.1.1
Faktorisiere aus heraus.
Schritt 8.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 8.3.1.2.1
Faktorisiere aus heraus.
Schritt 8.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.2.3
Forme den Ausdruck um.
Schritt 8.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 9.3
Kürze den gemeinsamen Teiler von und .
Schritt 9.3.1
Faktorisiere aus heraus.
Schritt 9.3.2
Kürze die gemeinsamen Faktoren.
Schritt 9.3.2.1
Faktorisiere aus heraus.
Schritt 9.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.3.2.3
Forme den Ausdruck um.
Schritt 10
Schritt 10.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 10.2
Setze die bekannten Werte ein.
Schritt 10.3
Vereinfache den Wert von .
Schritt 10.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 10.3.1.1
Faktorisiere aus heraus.
Schritt 10.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 10.3.1.2.1
Faktorisiere aus heraus.
Schritt 10.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.3.1.2.3
Forme den Ausdruck um.
Schritt 10.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 11
Das ist die Lösung zu jedem trigonometrischen Wert.