Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Für jedes existieren vertikale Asymptoten bei , wobei eine Ganzzahl ist. Benutze die Grundperiode für , , um die vertikalen Asymptoten für zu bestimmen. Setze das Innere der Sekans-Funktion, , für gleich , um herauszufinden, wo die vertikale Asymptote für auftritt.
Schritt 2
Schritt 2.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.3
Subtrahiere von .
Schritt 2.1.4
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.4.1
Faktorisiere aus heraus.
Schritt 2.1.4.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.4.2.1
Faktorisiere aus heraus.
Schritt 2.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.4.2.3
Forme den Ausdruck um.
Schritt 2.1.4.2.4
Dividiere durch .
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.2.2.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.2.3.2
Dividiere durch .
Schritt 3
Setze das Innere der Sekansfunktion gleich .
Schritt 4
Schritt 4.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.3
Subtrahiere von .
Schritt 4.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.4.2
Dividiere durch .
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Schritt 4.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.2.2.2
Dividiere durch .
Schritt 4.2.3
Vereinfache die rechte Seite.
Schritt 4.2.3.1
Bringe die negative Eins aus dem Nenner von .
Schritt 4.2.3.2
Schreibe als um.
Schritt 5
Die fundamentale Periode für tritt auf bei , wobei und vertikale Asymptoten sind.
Schritt 6
Schritt 6.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.2
Dividiere durch .
Schritt 7
Die vertikalen Asymptoten für treten auf bei , und jedem , wobei eine Ganzzahl ist. Das ist die Hälfte der Periode.
Schritt 8
Der Sekans hat nur vertikale Asymptoten.
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Vertikale Asymptoten: , wobei eine Ganzzahl ist
Schritt 9