Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Benutze die Definition des Sinus, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 2
Berechne die Ankathete des Dreiecks im Einheitskreis. Da die Hypotenuse und die Gegenkathete bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 3
Ersetze die bekannten Werte in der Gleichung.
Schritt 4
Schritt 4.1
Kehre das Vorzeichen von um.
Ankathete
Schritt 4.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Ankathete
Schritt 4.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Ankathete
Schritt 4.4
Mutltipliziere mit .
Ankathete
Schritt 4.5
Addiere und .
Ankathete
Schritt 4.6
Jede Wurzel von ist .
Ankathete
Schritt 4.7
Mutltipliziere mit .
Ankathete
Ankathete
Schritt 5
Schritt 5.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 5.2
Setze die bekannten Werte ein.
Schritt 5.3
Dividiere durch .
Schritt 6
Schritt 6.1
Benutze die Definition des Tangens, um den Wert von zu ermitteln.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Dividiere durch .
Schritt 7
Schritt 7.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Die Division durch führt dazu, dass der Kotangens bei nicht definiert ist.
Undefiniert
Schritt 8
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Dividiere durch .
Schritt 9
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 9.3
Die Division durch führt dazu, dass der Kosekans bei nicht definiert ist.
Undefiniert
Schritt 10
Das ist die Lösung zu jedem trigonometrischen Wert.
Undefiniert