Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Benutze die Definition des Tangens, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 2
Berechne die Hypotenuse des Dreiecks im Einheitskreis. Da die Gegenkathete und die Ankathete bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 3
Ersetze die bekannten Werte in der Gleichung.
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.1.1
Benutze , um als neu zu schreiben.
Hypothenuse
Schritt 4.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Hypothenuse
Schritt 4.1.3
Kombiniere und .
Hypothenuse
Schritt 4.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.1.4.1
Kürze den gemeinsamen Faktor.
Hypothenuse
Schritt 4.1.4.2
Forme den Ausdruck um.
Hypothenuse
Hypothenuse
Schritt 4.1.5
Berechne den Exponenten.
Hypothenuse
Hypothenuse
Schritt 4.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Hypothenuse
Schritt 4.3
Addiere und .
Hypothenuse
Hypothenuse
Schritt 5
Schritt 5.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 5.2
Setze die bekannten Werte ein.
Schritt 5.3
Vereinfache den Wert von .
Schritt 5.3.1
Mutltipliziere mit .
Schritt 5.3.2
Vereinige und vereinfache den Nenner.
Schritt 5.3.2.1
Mutltipliziere mit .
Schritt 5.3.2.2
Potenziere mit .
Schritt 5.3.2.3
Potenziere mit .
Schritt 5.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3.2.5
Addiere und .
Schritt 5.3.2.6
Schreibe als um.
Schritt 5.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 5.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.2.6.3
Kombiniere und .
Schritt 5.3.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.6.4.2
Forme den Ausdruck um.
Schritt 5.3.2.6.5
Berechne den Exponenten.
Schritt 5.3.3
Vereinfache den Zähler.
Schritt 5.3.3.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 5.3.3.2
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Vereinfache den Wert von .
Schritt 6.3.1
Mutltipliziere mit .
Schritt 6.3.2
Vereinige und vereinfache den Nenner.
Schritt 6.3.2.1
Mutltipliziere mit .
Schritt 6.3.2.2
Potenziere mit .
Schritt 6.3.2.3
Potenziere mit .
Schritt 6.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.3.2.5
Addiere und .
Schritt 6.3.2.6
Schreibe als um.
Schritt 6.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 6.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2.6.3
Kombiniere und .
Schritt 6.3.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 6.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.6.4.2
Forme den Ausdruck um.
Schritt 6.3.2.6.5
Berechne den Exponenten.
Schritt 7
Schritt 7.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Vereinfache den Wert von .
Schritt 7.3.1
Mutltipliziere mit .
Schritt 7.3.2
Vereinige und vereinfache den Nenner.
Schritt 7.3.2.1
Mutltipliziere mit .
Schritt 7.3.2.2
Potenziere mit .
Schritt 7.3.2.3
Potenziere mit .
Schritt 7.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.3.2.5
Addiere und .
Schritt 7.3.2.6
Schreibe als um.
Schritt 7.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 7.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.3.2.6.3
Kombiniere und .
Schritt 7.3.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 7.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.6.4.2
Forme den Ausdruck um.
Schritt 7.3.2.6.5
Berechne den Exponenten.
Schritt 8
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Dividiere durch .
Schritt 9
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 9.3
Vereinfache den Wert von .
Schritt 9.3.1
Mutltipliziere mit .
Schritt 9.3.2
Vereinige und vereinfache den Nenner.
Schritt 9.3.2.1
Mutltipliziere mit .
Schritt 9.3.2.2
Potenziere mit .
Schritt 9.3.2.3
Potenziere mit .
Schritt 9.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.3.2.5
Addiere und .
Schritt 9.3.2.6
Schreibe als um.
Schritt 9.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 9.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.3.2.6.3
Kombiniere und .
Schritt 9.3.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 9.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 9.3.2.6.4.2
Forme den Ausdruck um.
Schritt 9.3.2.6.5
Berechne den Exponenten.
Schritt 9.3.3
Vereinfache den Zähler.
Schritt 9.3.3.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 9.3.3.2
Mutltipliziere mit .
Schritt 10
Das ist die Lösung zu jedem trigonometrischen Wert.