Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Jede Wurzel von ist .
Schritt 4.3
Mutltipliziere mit .
Schritt 4.4
Vereinige und vereinfache den Nenner.
Schritt 4.4.1
Mutltipliziere mit .
Schritt 4.4.2
Potenziere mit .
Schritt 4.4.3
Potenziere mit .
Schritt 4.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.4.5
Addiere und .
Schritt 4.4.6
Schreibe als um.
Schritt 4.4.6.1
Benutze , um als neu zu schreiben.
Schritt 4.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.4.6.3
Kombiniere und .
Schritt 4.4.6.4
Kürze den gemeinsamen Faktor von .
Schritt 4.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.6.4.2
Forme den Ausdruck um.
Schritt 4.4.6.5
Berechne den Exponenten.
Schritt 5
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 7
Schritt 7.1
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 7.2
Vereinfache die rechte Seite.
Schritt 7.2.1
Der genau Wert von ist .
Schritt 7.3
Die Kotangens-Funktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu ermitteln, addiere den Referenzwinkel aus , um die Lösung im vierten Quadranten zu bestimmen.
Schritt 7.4
Vereinfache .
Schritt 7.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.4.2
Kombiniere Brüche.
Schritt 7.4.2.1
Kombiniere und .
Schritt 7.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.4.3
Vereinfache den Zähler.
Schritt 7.4.3.1
Bringe auf die linke Seite von .
Schritt 7.4.3.2
Addiere und .
Schritt 7.5
Ermittele die Periode von .
Schritt 7.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.5.2
Ersetze durch in der Formel für die Periode.
Schritt 7.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.5.4
Dividiere durch .
Schritt 7.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 8
Schritt 8.1
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 8.2
Vereinfache die rechte Seite.
Schritt 8.2.1
Der genau Wert von ist .
Schritt 8.3
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Schritt 8.4
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 8.4.1
Addiere zu .
Schritt 8.4.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 8.5
Ermittele die Periode von .
Schritt 8.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.5.2
Ersetze durch in der Formel für die Periode.
Schritt 8.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.5.4
Dividiere durch .
Schritt 8.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 9
Liste alle Lösungen auf.
, für jede ganze Zahl
Schritt 10
Schritt 10.1
Führe und zu zusammen.
, für jede ganze Zahl
Schritt 10.2
Führe und zu zusammen.
, für jede ganze Zahl
, für jede ganze Zahl