Trigonometrie Beispiele

x 구하기 tan(x)+( Quadratwurzel von 3)/(tan(x))<1+ Quadratwurzel von 3
Schritt 1
Ersetze durch .
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Mutltipliziere mit .
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.2
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 4
Löse die Ungleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Stelle so um, dass auf der linken Seite der Ungleichung steht.
Schritt 4.2
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 4.3
Wandle die Ungleichung in eine Gleichung um.
Schritt 4.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.5
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Stelle die Terme um.
Schritt 4.5.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 4.5.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 4.5.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 4.6
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.7
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.1
Setze gleich .
Schritt 4.7.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.7.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.7.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.7.2.2.2.2
Dividiere durch .
Schritt 4.7.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.2.2.3.1
Dividiere durch .
Schritt 4.8
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.8.1
Setze gleich .
Schritt 4.8.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.9
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 5
Ersetze durch .
Schritt 6
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 7
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 7.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Der genau Wert von ist .
Schritt 7.3
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 7.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1
Kombiniere und .
Schritt 7.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.3.1
Bringe auf die linke Seite von .
Schritt 7.4.3.2
Addiere und .
Schritt 7.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.5.2
Ersetze durch in der Formel für die Periode.
Schritt 7.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.5.4
Dividiere durch .
Schritt 7.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 8
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 8.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Der genau Wert von ist .
Schritt 8.3
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 8.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 8.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.2.1
Kombiniere und .
Schritt 8.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.3.1
Bringe auf die linke Seite von .
Schritt 8.4.3.2
Addiere und .
Schritt 8.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.5.2
Ersetze durch in der Formel für die Periode.
Schritt 8.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.5.4
Dividiere durch .
Schritt 8.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 9
Liste alle Lösungen auf.
, für jede ganze Zahl
Schritt 10
Fasse die Lösungen zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Führe und zu zusammen.
, für jede ganze Zahl
Schritt 10.2
Führe und zu zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 11
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Setze das Argument in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
, für jede ganze Zahl
Schritt 11.2
Setze das Argument in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
, für jede ganze Zahl
Schritt 11.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 12
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 13
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 13.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 13.1.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 13.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 13.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 13.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 13.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 13.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 13.3.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 13.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Wahr
Wahr
Wahr
Wahr
Wahr
Schritt 14
Die Lösung besteht aus allen wahren Intervallen.
or or , for any integer
Schritt 15
Vereine die Intervalle.
, für jede ganze Zahl
Schritt 16